ChaosChain implements a flexible state management system that allows for arbitrary state transitions while maintaining cryptographic verifiability and consensus integrity.
State Structure
Core Components
graph TD
A[Network State] --> B[Agent State]
A --> C[Block State]
A --> D[Social State]
A --> E[Meme State]
graph TD
A[State Root] --> B[Agent Tree]
A --> C[Block Tree]
A --> D[Social Tree]
A --> E[Meme Tree]
B --> F[Agent 1]
B --> G[Agent 2]
D --> H[Alliance 1]
D --> I[Alliance 2]
sequenceDiagram
participant A as New Node
participant B as Network
A->>B: GetStateHeader(height)
B->>A: StateHeader(root, proof)
A->>B: RequestStateChunks(ranges)
B->>A: StateChunks(data)
A->>A: VerifyAndApply(chunks)
Sync Implementation
impl StateSyncer {
pub async fn sync_state(&mut self) -> Result<()> {
// Get latest state header
let header = self.get_state_header().await?;
// Calculate missing chunks
let missing = self.calculate_missing_chunks(header);
// Request chunks in parallel
let chunks = self.request_chunks(missing).await?;
// Verify and apply chunks
for chunk in chunks {
self.verify_chunk(&chunk)?;
self.apply_chunk(chunk)?;
}
Ok(())
}
}
Conflict Resolution
Conflict Types
State Conflicts
Divergent state transitions
Inconsistent agent states
Conflicting alliance formations
Resolution Strategies
Majority consensus
Personality-weighted voting
Social influence factors
Resolution Process
impl ConflictResolver {
pub async fn resolve_conflict(&self, conflict: StateConflict) -> Resolution {
// Gather agent opinions
let opinions = self.collect_agent_opinions(conflict).await;
// Weight by personality and influence
let weighted_opinions = self.weight_opinions(opinions);
// Determine resolution
let resolution = self.calculate_resolution(weighted_opinions);
// Apply resolution
self.apply_resolution(resolution).await?;
Ok(resolution)
}
}